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Abstract: The hyperloop is an innovative land transport mode for passengers and freight that
travels at ultra-high speeds. Lately, different stakeholders have been engaged in the research and
development of hyperloop components. The novelty of the hyperloop necessitates certain directions
to be followed toward the development and testing of its technological components as well the
formation of regulations and planning processes. In this paper, we conduct a comprehensive
literature review of hyperloop publications to record the current state of progress of hyperloop
components, including the pod, the infrastructure, and the communication system, and identify
involved EU stakeholders. Blending this information results in future directions. An online search
of English-based publications was performed to finally consider 107 studies on the hyperloop and
identify 81 stakeholders in the EU. The analysis shows that the hyperloop-related activities are almost
equally distributed between Europe (39%) and Asia (38%), and the majority of EU stakeholders are
located in Spain (26%) and Germany (20%), work on the traction of the pod (37%) and the tube
(28%), and study impacts including safety (35%), energy (33%), and cost (30%). Existing tube systems
and testing facilities for the hyperloop lack full-scale tracks, which creates a hurdle for the testing
and development of the hyperloop system. The presented analysis and findings provide a holistic
assessment of the hyperloop system and its stakeholders and suggest future directions to develop a
successful transport system.

Keywords: hyperloop; fifth mode; ultra-high speed; low-pressure; vacuum

1. Introduction

The hyperloop is defined as a mode of land transportation capable of high-speed
and driverless operations in which a vehicle is guided through a low-pressure tube or
system of tubes, for passengers and/or cargo [1]. It is a novel mode of intercity transport,
designed to connect cities safely, efficiently, and sustainably, in a fixed guideway tube-based
infrastructure. The hyperloop is a mode for passenger and freight transport that travels
at ultra-high speeds of up to 1200 km per hour. It may also be described as a pod- and
magnetic-levitation-based mode of transport in a low-pressure-sealed tube or system of
tubes that operates in a low-pressure environment to reduce drag and increases efficiency
to drastically reduce travel times [2,3]. A fusion of advanced technologies that is used
on high-speed railway (HSR), aviation, aerospace, and magnetic levitation applications is
required for the successful implementation of the hyperloop and its safe integration into
the current transport system [4].

Since the first conception of the hyperloop, a significant amount of research and patent
activity on several aspects of the hyperloop system components has been highlighted.
Although there are other transport modes with similar components that can be used in
hyperloop development, some hyperloop components differ substantively. For example,
the hyperloop uses a propulsion system similar to the maglev trains but runs at higher
speeds. Additionally, the pressure value that the pod supports is similar to conditions
used in airplanes. Description of the hyperloop system components is provided in several

Sustainability 2021, 13, 8430. https://doi.org/10.3390/su13158430 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su13158430
https://doi.org/10.3390/su13158430
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13158430
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su13158430?type=check_update&version=1


Sustainability 2021, 13, 8430 2 of 28

studies [5–22]. Hyperloop studies focus on specific performance topics, such as aerodynam-
ics [15,18,22–43], safety [8,9,16,19,20,44,45], and energy [7,9,14,16–18,23,28,39,44,46–58],
while others focus on different hyperloop technologies, such as in the field of pneumatic
tube and tunnel systems [18,20,23,24,28,31,42,44,53,59–61]. The system functionality of
certain technologies at a sub-scale level and low speeds has been proven; however, the
compatibility of the various systems in subsonic speed ranges and at a real scale has yet to
be verified [5,11,16,20,44].

This fusion of technologies has engaged multiple public (e.g., MIT, UPV, EPFL, ETH,
TU Delft, TU Munich, etc.) and private (e.g., Hardt, Hyperloop Transportation Technologies,
Virgin Hyperloop, Zeleros, Nevomo, Swisspod Technologies, Transpod, etc.) stakeholders
in the research and development of the hyperloop system in North America, Asia, and
Europe. Gkoumas and Christou [45] reviewed hyperloop scientific literature and patents,
while the Hyperloop Standards Desk Review [3] provided a list of US stakeholders engaged
in hyperloop R&D. Nonetheless, a list of EU stakeholders working on the hyperloop system
and research directions per hyperloop component is not provided in the literature.

Compared to those reviews, our study adds value by reviewing the most relevant
literature to (1) describe the current state of progress for hyperloop system components
and clusters information, (2) identify and present EU stakeholders per country engaged in
hyperloop R&D, and (3) provide directions for future research per hyperloop component.

In the remainder of this paper, Section 2 presents the methods used to identify litera-
ture for our review. The results in Section 3 include metrics and key features of reviewed
publications, clustered information, identified EU stakeholders engaged in hyperloop
activities, and a comprehensive analysis of the current state of progress for hyperloop com-
ponents. We conclude the paper by providing directions for future research per hyperloop
system component in Section 4.

2. Research Methodology

The hyperloop has triggered global awareness and efforts between 2015 and 2020 on
improving its systems and components. A review of the existing literature is performed to
answer four research questions [62]: (1) which stakeholders work on the hyperloop system,
(2) where involved stakeholders are located, (3) what the current state of progress related
to the hyperloop system is, and (4) what the next steps toward implementing hyperloop
system are. To answer these research questions, the most recent data are collected and
used. For the literature review, the data sources that are used to collect the necessary
information and data include published journal and conference papers (Science Direct,
Web of Science, Google Scholar, Wiley Online Library. and Springer) as well as company
and project reports.

The collection of data is composed of three sub-steps: primary studies, search key-
words, and search databases. Primary studies refer to the identification of relevant studies
to ensure first that the set research questions–objectives are valid, avoid duplication of
previous work, and ensure that enough material is available to conduct the analysis. An
initial search in “Google Scholars” and “Science Direct” by using the terms “hyperloop”
AND “review” resulted in two relevant studies that provide a short review of hyperloop
system components [6] and a review focusing on the status of hyperloop standardization
activities and stakeholder perspectives on the applicability of existing standards in the
US [3]. However, none of them include an integrated review of EU stakeholders, hyperloop
system components, and future directions.

The literature review focused on publications in academic journals and conferences
and reports in the English language. A search was performed by using the terms “hyper-
loop”, “tube transport”, and “tube transportation”. The search was performed in March
2021 and provided 195 results that included these terms in their title. The first task was
to merge publications and exclude potential duplicates and publications that were not in
English or related to transport, that were not accessible, or that only provided abstracts.
All duplicate publications were deleted; the remaining ones were exported to an excel
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file for screening. This process resulted in 107 records; 82 resulted from using the term
“hyperloop” and 25 from using the term “tube transport”. The following research method
appears in Figure 1.
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Figure 1. Summary of steps followed in the literature review.

3. Analysis and Results

The analysis started with two researchers that extracted information from publications.
After the researchers reached a consensus about what to record from available publications
to fulfill the study goals, they split the work equally. Firstly, a descriptive analysis of the
identified literature was conducted based on the distribution of publications per country,
year, and type (i.e., journal, conference, or report). Each publication was recorded according
to title, authors, year of publication, and location of the study and then was reviewed
to record specific features (when available) and build the database. Secondly, according
to the research questions, the papers have been classified according to a) (a) stakeholder
category (i.e., research organization, public organization, industry, or public–private ini-
tiative), (b) infrastructure (i.e., tube, substructure, station, interface pod–tube, or other),
(c) pod (i.e., interior, system propulsion, or both), (d) performance (i.e., safety, energy,
aerodynamics, traffic, environment, cost, or other), and (e) research topic. Stakeholders
that were identified in publications were further explored by conducting a desk review and
focusing on the online official websites of each identified stakeholder to obtain location
information.

This section provides an overview of findings regarding the hyperloop publications,
stakeholders in the EU, and hyperloop components, following the described method. Findings
are clustered and presented in tables to better convey the information about the hyperloop’s
current state of progress. The goal is to gain insights related to hyperloop research and
development and identify potential gaps in its operation to provide future directions.

3.1. Hyperloop Publications

Literature has been published from 2008–2021 (i.e., first quarter of 2021) with the
majority of studies (95%) being published after 2016 (Figure 2), which shows the increasing
interest in the hyperloop after the release of Hyperloop Alpha by Elon Musk in 2013 [17].
All publications before 2014 referred to “tube” transport or “vactrain”.

Half of the literature at the global level is scientific journals, while the remaining 50%
is almost equally distributed between conference publications and reports. In an attempt
to map the geographic location of these publications on hyperloop, all authors have been
recorded by country and aggregated by continent. Europe contributes significantly (39%)
to hyperloop research, as shown in Figure 3. The remaining 61% is allocated to North
America (24%) and Asia (37%).
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Figure 3. Hyperloop publications by geographic area.

Several academic and industrial research teams that focus specifically on the hyper-
loop system have been formed. Other transport stakeholders are also engaged in hyperloop
research occasionally and publish their work on this developing field. Academic organiza-
tions usually collaborate with governmental and industry partners. The majority of the
academic organizations do not focus exclusively on the hyperloop; rather, they conduct
research on the hyperloop occasionally. However, some university-based teams have been
developed that focus exclusively on the hyperloop. Tables 1 and 2 summarize publications
in Asia and North America, respectively, in an attempt to map hyperloop activities in these
two continents.
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Table 1. Hyperloop publications in Asia.

Source Country Type Infrastructure Pod Performance Research Focus

Bansal &
Kumar,
2019 [6]

India J Tube System/prop. Other Short review.

Kaushal,
2020
[12]

India J - - - Review of the hyperloop

Shinde
et al., 2017

[21]
India J Other System/prop. Aerodynamics Short literature.

Jiqiang
et al., 2020

[24]
China J Tube - Aerodynamics

Studied the differences in aerodynamic effects when the
train accelerates (decelerates) past the speed of sound and

the influence of different values of acceleration
(deceleration) on the aerodynamic effects.

Oh et al.,
2019
[31]

Korea,
South J Interface

pod–tube System/prop. Aerodynamics Investigated the flow phenomena of a hyperloop system.

T. K. Kim
et al., 2011

[35]

Korea,
South J Tube - Aerodynamics

Studied the parameters of the tube train system: internal
tube pressure, blockage ratio, and operating speed by

computational analysis.
Zhou et al.,

2021
[36]

China J Tube - Aerodynamics
Simulated the motion in the tube using the dynamic mesh

method; the evacuated tube maglev train was studied
under different suspension gaps.

Sui et al.,
2020
[37]

China J Tube - Aerodynamics
Unstable aerothermal phenomenon, causing the
temperature to rise sharply inside the tube and

endangering the safe operation of trains and equipment.
Sui et al.,

2021
[38]

China J Tube - Aerodynamics
Studied the influence of the vacuum degree on the flow

field around a train capsule running in an evacuated tube
with a circular section.

Niu et al.,
2019
[40]

China J Tube System/prop. Aerodynamics
Formation and evolution mechanism of aerodynamic

heating in the tube and influence of the Mach number at
subsonic, transonic, and supersonic speed.

Zhou et al.,
2019
[41]

China J Tube - Aerodynamics Simulated the real motion of evacuated tube maglev train
and improve the capture accuracy of the waves.

Tang et al.,
2013
[42]

China J Tube - Aerodynamics Study of model parameters impacting train speed and the
aerodynamic drag under multifield coupling.

Belova &
Vulf, 2016

[59]
Russia C Interface

pod–tube - Energy
Analyzed the pneumatic capsule for transport of different
cargoes. Studied pressure in real-time mode and movement

of the capsule.
Le et al.,

2020
[60]

Korea,
South J Interface

pod–tube System/prop. Aerodynamics Investigated the effects of pod speed, blockage ratio, tube
pressure, and pod length on the drag and drag coefficient.

Ji et al.,
2018
[63]

Korea,
South J Interface

pod–tube - Other Focused on thrust forces.

Lim et al.,
2020
[64]

Korea,
South C Interface

pod–tube - Energy Optimized on-board superconducting magnet with respect
to energy.

Harish
et al., 2017

[65]
India J Tube System/prop. Aerodynamics Computational fluid dynamics (CFD) were used to simulate

the airflow around the hyperloop pod at transonic speeds.

Rob et al.,
2019
[66]

China J Tube Both - Short review.

Dudnikov,
2019
[67]

Russia C Station - - Studied the structure of the hyperloop passenger system
when an intermediate station appears.

Dudnikov,
2018
[68]

Russia C - Interior Safety Estimated time for the expiration of air from the capsule in
an emergency situation.

K. K. Kim,
2018
[69]

Russia C Interface
pod–tube - Aerodynamics

Alternative pipe design without using the technical
vacuum. Used the rarefied air in the pipe and the linear

induction motor.
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Table 1. Cont.

Source Country Type Infrastructure Pod Performance Research Focus

S. Y. Choi
et al., 2019

[70]

Korea,
South J Interface

pod–tube System/prop. Energy
Introduced optimal design methods for linear synchronous
motors and inverters. Designed guidelines and examples

for the commercialization version.
Dudnikov,

2017
[71]

Russia C Tube System/prop. Other
Passenger and cargo transport. Studied capacity, costs,

independence from weather conditions, ecological
cleanliness, and security.

Pradhan &
Katyayan,

2018
[72]

India C Interface
pod–tube System/prop. Aerodynamics Braking forces.

D. W. Kim
et al., 2017

[73]

Korea,
South J Tube - - CFD to investigate the shock train phenomenon inside the

tube.

Seo et al.,
2020
[74]

Korea,
South J Interface

pod–tube - Aerodynamics Study of magnetic levitation driving system; design
analysis.

Zhou &
Zhang,

2020
[75]

China J Tube - Aerodynamics High-speed movement process of evacuated tube maglev
train was reproduced by numerical simulation.

J. Choi
et al., 2016

[76]

Korea,
South J Tube – Safety Airflow through cracks.

Kwon et al.,
2017
[77]

Korea,
South J Tube - Energy Six different photovoltaic configuration cases.

Note: Journal (J), report (R), conference (C).

Table 2. Hyperloop publications in North America.

Source Country Type Infrastructure Pod Performance Comments

NETT
Council, 2021

[3]
US R - - -

A literature for domestic and international
standardization activities conducted by government

entities, standards development organizations (SDOs),
and private industry.

HyperloopTT,
2019
[8]

US R Other System/prop. Other Economic analysis and operating cost. Discussed tube,
pod, vacuum system, station, and route.

Santangelo,
2018
[11]

US J Substructure - - Structural approach and design.

MIT
Hyperloop
Team, 2017

[15]

US R Interface
pod–tube System/prop. Other Studied aerodynamics, energy, vibration, software.

AECOM,
2020
[16]

Canada R Other System/prop. Other

Tube, switching, substructure, vacuum, propulsion, and
power.

Energy, security, pod design, capital, and operating costs.
Risk assessment.

SpaceX &
Tesla, 2013

[17]
US R Other Both Safety All aspects of infrastructure and pod. Route optimization.

Safety, cost, and reliability.

Chin et al.,
2015
[18]

US J Interface
pod–tube - Aerodynamics Aerodynamic and thermodynamic interactions between

the two largest systems: the tube and the pod.

Janzen, 2017
[22] Canada C Tube - Aerodynamics Aerodynamics, dynamics, and vibration of tube.

Decker et al.,
2017
[23]

US C Other System/prop. Other

Studied drag, cycle, drivetrain, geometry and mass, and
levitation for pod.

Studied vacuum, thermal management, propulsion, and
substructure for tube.
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Table 2. Cont.

Source Country Type Infrastructure Pod Performance Comments

Opgenoord &
Caplan, 2018

[26]
US C - System/prop. Aerodynamics Aerodynamic design considerations for the hyperloop

pod (aerodynamic design considerations for the pod).

Covell, 2017
[46] US R Other Both Other Review all parts of infrastructure. Concerns and risks are

outlined. Speed, time, energy, emissions, and costs.

Taylor et al.,
2016
[53]

US R Station Both Other

Hyperloop comparisons to other modes: Travel time,
frequency, user cost, comfort, reliability, energy

consumption, capacity, system resilience, system
interoperability, costs, and safety.

Bose &
Viswanathan,

2021 [78]
US J Tube - Aerodynamics

Study 1) the piston effect, and 2) the addition of
aerofoil-shaped fins on the performance of a hyperloop

pod in a partially vacuum tunnel.
Sayeed et al.,

2018
[79]

Canada C Interface
pod–tube - Energy

A comprehensive finite-element analysis to determine the
design specifications of the pod levitation and propulsion

control.
Heaton, 2017

[80] US C Substructure - Safety Earthquake motion impact on tube and centripetal forces
on the pod.

Chaidez et al.,
2019
[81]

US J Interface
pod–tube - Energy

Power requirements for each of the three major modes of
hyperloop operation: rolling wheels, sliding air bearings,

and levitating magnetic suspension systems.
Nikolaev

et al., 2018
[82]

Canada C Interface
pod–tube System/prop. Safety Validate correctness of pod’s software and embedded

systems.

Halsmer
et al., 2017

[83]
US C Interface

pod–tube System/prop. Other
Develop a prototype for a high-speed, magnetically

levitated transport pod
for the hyperloop competition.

Soni et al.,
2019
[84]

US R Interface
pod–tube - - Braking forces.

Sirohiwala
et al., 2007

[85]
US R Other - Other Maglev, high speed, cost, safety, energy, and

aerodynamics.

Rajendran &
Harper, 2020

[86]
US J - - Traffic Built simulation models to study operational

perspectives.

Note: Journal (J), report (R), conference (C).

3.2. Hyperloop in the EU

This subsection presents the publications and EU stakeholders engaged in hyperloop
activities. The comprehensive literature review of the hyperloop is presented in Table 3. The
table presents a detailed categorization of publications per location, hyperloop components
(i.e., infrastructure and pod), and performance areas. This categorization allows obtaining
the required information and insights related to the hyperloop system and the components
that stakeholders work on and identifying the research trends in this emerging fifth mode
of transport.

It was estimated that 45% of total publications were released by a European-based
organization, of which 49% were released in a scientific journal, 21% in conference proceed-
ings, and 30% as a report. The majority of all published material (80%), including journals,
conference publications, and reports, has been released by academic institutes.
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Table 3. Hyperloop publications 1 in Europe.

Source Country Type Infrastructure Pod Performance Research Focus

Noland, 2021
[5] Norway J Other System/prop. Other

A comprehensive review of the core technologies
needed to realize the hyperloop transportation

system, demonstrating the theoretical background.
Comparison of two technical solutions and

identification of future research items.
Janić, 2020 [7] Netherlands J - - Environment Energy consumption and GHG emissions.
Riviera, 2018

[9] Italy R Other System/prop. Energy Tube, substructure, and station.

BAK
Economics

AG,
2020 [10]

Switzerland R - - Other Travel time, speed, cost, capacity, energy,
environment, and safety.

Hansen, 2020
[13] Netherlands J Station Interior Other

Technical feasibility of the proposed hyperloop
concept for vehicle design, capacity, operations,

propulsion, guidance, energy supply, traffic control,
safety, alignment, and construction. Environmental
impacts, investment, operating, and maintenance

costs for implementation of a hyperloop line.
Tudor &

Paolone, 2019
[14]

Switzerland C Interface
pod–tube System/prop. Energy Assessment of the optimal design of the propulsion

system of an energy autonomous hyperloop capsule.

Delft
Hyperloop,

2020 [19]
Netherlands R Tube Both Safety Fire safety, communication system, and emergency

evacuation.

Delft
Hyperloop,

2019
[20]

Netherlands R Other Both Other
Levitation, propulsion, passenger pod, tube, vacuum,
communication, artificial intelligence, cost estimation,

and safety.

Connolly &
Woodward,

2020 [25]

United
Kingdom J Tube System/prop. Aerodynamics Energy, safety, economics, and journey time.

Nick & Sato,
2020 [27] Switzerland J Tube System/prop. Aerodynamics Drag and lift forces.

Nowacki
et al., 2019

[28]
Poland C Tube - Energy Studied the flow of the capsule and the

determination of the force acting on the nose of it.

Wong, 2018
[34] Netherlands R Tube - Aerodynamics Aerodynamic shape optimization procedure for a

hyperloop pod.
Machaj et al.,

2020
[39]

Poland J - System/prop. Aerodynamics Aerodynamic and heat transfer study of a
battery-powered vehicle moving in a vacuum tunnel.

Lluesma
Rodriguez,
González,
et al., 2021

[43]

Spain J Tube System/prop. Aerodynamics Demonstrated that the drag coefficient is almost
invariant with pressure conditions.

Van
Goeverden
et al., 2018

[44]

Netherlands J - - Other Financial, social/environmental indicators.

Gkoumas &
Christou,
2020 [45]

Italy J Other System/prop. Other Energy consumption, safety and serviceability, and
financial feasibility. Literature review aspects.

Lafoz et al.
[48] Spain J Interface

pod–tube System/prop. Energy
Analyzed the alternatives for the power supply of the

hyperloop. Selected the technology case of the
Spanish company Zeleros.

Pellicer
Zubeldia,

2020
[51]

Spain R Tube System/prop. Other

A freight transport vehicle was conceptually
developed, analyzed, and simulated. Established
variables for different aspects: Kantrowitz limit,

aerodynamics, transportation, energy consumption,
batteries, levitation and propulsion, etc.

Tudor &
Paolone, 2019

[54]
Switzerland C - System/prop. Energy Optimal design of the propulsion system of an

energy-autonomous hyperloop capsule.

Werner et al.,
2016
[55]

Germany J - - Other
Speed, frequency, payload, energy, consumption,

safety, traffic, noise, reliability, pollution, cost,
maintenance, and shared value.
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Table 3. Cont.

Source Country Type Infrastructure Pod Performance Research Focus

Museros
et al., 2021

[61]
Spain J Substructure - Safety

The strength and stability of the tube have been
analyzed by taking into account the self and dead
weight, internal low pressure, wind, thermal, and

traversing vehicle dynamic effects.
Stryhunivska

et al., 2020
[87]

Poland J Station - Safety Analysis of a designed underground station
infrastructure.

Walker, 2018
[88]

United
Kingdom R Other Interior Other

Construction tube and substructure.
Performance: travel time, capacity, land implications,
energy demand, costs, safety, and passenger comfort.

Alexander &
Kashani, 2018

[89]

United
Kingdom J Substructure - Other Simulate the dynamic response of continuous bridges

(safety).

Doppelbauer,
2013
[90]

United
Kingdom R Other System/prop. Other Summary of hyperloop system. Fundamental aspects

related to innovation in infrastructure networks.

Munich RE,
2017 [91] Germany R - - - Risk assessment.

Ahmadi et al.,
2020 [92]

United
Kingdom J Substructure - Safety Exploring the lateral dynamic interaction of the

bridge deck (twin tube) and piers.
Voltes-Dorta

& Becker,
2018 [93]

United
Kingdom J - - Traffic Planning as a complement to an airport.

Gkoumas &
Christou,
2020 [94]

Italy C - - - Interactions with other modes, current status in the
EU, and risk assessment discussion.

Gkoumas &
Christou,
2021 [95]

Italy J Other System/prop. Other Safety and serviceability performance.

Li et al., 2019
[96] Netherlands C - Interior Other

Embarking and disembarking process for the
hyperloop. Higher efficiency and better user

experience.
HYPED, n.d.

[97]
United

Kingdom R - Cost Feasibility study, cost, and social and environmental
impacts.

Schodl et al.,
2018
[98]

Austria C - Other Regional impacts: social, cost, and environment.

Munir et al.,
2019
[99]

United
Kingdom R - System/prop. Cost Sustainability study.

González-
González &

Nogués, 2017
[100]

Spain R - - Review general concept.

González-
González &

Nogués, 2017
[101]

Spain R - - Cost Comparison of HSR, maglev, and hyperloop.

Connolly &
Costa, 2020

[102]

United
Kingdom J Substructure - Safety

Simulated ground-wave propagation in the presence
of a series of discrete high-speed loads moving on a

soil-guideway system.
Strawa &
Malczyk,
2019 [103]

Poland J Interface
pod–tube System/prop. Other Performance and stability of the vehicle. Studied ride

comfort of passengers traveling in a compartment.

Lluesma-
Rodríguez,
Álcantara-

Ávila, et al.,
2021 [104]

Spain J Tube - Aerodynamics
Used methods for extensive direct numerical

simulations of passive thermal flow for several
boundary conditions.

García-
Tabarés et al.,

2021 [105]
Spain C Interface

pod–tube System/prop. - Studied and compared alternatives for acceleration.

Vellasco et al.,
2020 [106] Spain C - - Other

Analyzed existing infrastructure network of
Kazakhstan, highlighting the constraints and
difficulties. Reviewed aspects of the proposed

corridor from a technical, social, economic, and
environmental perspective.

1 Note: Journal (J), report (R), conference (C).
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Different EU stakeholders are engaged in activities related to the hyperloop system.
These EU stakeholders refer to organizations whose main goal and/or objective is the
development of the hyperloop system. To capture different aspects related to the hyperloop
system, three stakeholder categories are used:

• Research and public organizations (62) (Table 4).
• Private companies (10) (Table 5).
• Public and private initiatives (9) (Table 6).

In total, 81 unique organizations have been identified in 14 EU countries. It should be
noted that when more than one department of an organization is related to the hyperloop,
then this organization is counted as a single entry. Figures 4 and 5 show the percentage of
entries per country, with Spain, Germany, Switzerland, and the UK accounting for 26%,
20%, 11%, and 10%, respectively. All other countries are allocated a share of 9% or below.
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The majority of EU-based organizations that are related to hyperloop are found to be
academic or research institutes (76%). In many cases, hyperloop technology developers
have been actively collaborating with policymakers and Standard Developing Organiza-
tions (SDO). The stakeholder list (Tables 4–6) arranged by country may also serve as a
guide for stakeholders and investors seeking partnerships for the hyperloop.

Table 4. Research and public organizations.

Research and Public Organizations Short Name Country

University of Applied Sciences UAS Austria
Austrian Institute of Technology AIT Austria

University of Applied Sciences Upper Austria FH Upper
Austria Austria

Vienna University of Technology TU Wien Austria
EU Agency for Railways ERA France
Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center)—Next Generation
Train DLR-NGT Germany

Hochschule für Technik Stuttgart (Stuttgart University of Applied Sciences) HFT Stuttgart Germany
Fraunhofer - Germany

Technical University of Braunschweig TU
Brauschweig Germany

Technical University of Dresden TU Dresden Germany

Technical University of Darmstadt TU
Darmstadt Germany

Institute of Railway and Transportation Engineering IEV Germany
University of Stuttgart - Germany
Helmut Schmidt University - Germany

Technical University of Munich (TUM) TUM
Hyperloop Germany

TU Berlin Germany
The International Maglev Board Maglevboard Germany
University of Applied Sciences Emden/Leer & Carl von Ossietzky University of Oldenburg HyperPodX Germany
European Commission, Joint Research Centre (JRC) JRC Italy
Politechnico di Torino - Italy
Norwegian University of Science and Technology - Norway

Norwegian University of Science and Technology—Shift Hyperloop Shift
Hyperloop Norway

Wroclaw University of Science and Technology, Faculty of Mechanical Engineering - Poland
Wroclaw University of Science and Technology, Department of Cryogenics and Aerospace
Engineering - Poland

Warsaw University of Technology, Faculty of Power and Aeronautical Engineering WUT-IAAM Poland
Poznan University of Technology, Faculty of Transport Engineering PUT Poland
AGH University of Science and Technology AGH Poland
University of Porto, Faculty of Engineering U.Porto Portugal
Administrador de Infraestructuras Ferroviarias (Administrator of Railway Infrastructures) ADIF Spain
Centro de Estudios y Experimentación de Obras Publicas (Center for Studies and
Experimentation of Public Works) CEDEX Spain

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Center for Energy,
Environment and Technology) CIEMAT Spain

University of Cantabria - Spain

Hyperloop UPV—Universitat Politècnica de València (Polytechnical University of Valencia) Hyperloop
UPV Spain

Universitat Politècnica de València (Polytechnical University of Valencia), Instituto Universitario
de Matemática Pura y Aplicada UPV-IUMPA Spain

Universitat Politècnica de València (Polytechnical University of Valencia), Dpt. of Continuum
Mechanics and Theory of Structures UPV Spain

Instituto Tecnológico de la Energía (Technological Institute of Energy) ITE Spain
University of Zaragoza, Dpt. of Industrial Engineering - Spain
Instituto Tecnológico del Embalaje, Transporte y Logística (Technological Institute of Packaging,
Transport and Logistics) ITENE Spain

IKERLAN - Spain
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Table 4. Cont.

Research and Public Organizations Short Name Country

Red Nacional de los Ferrocarriles Españoles (National Network of Spanish Railways) RENFE Spain
Tecnalia - Spain
Universidad Politécnica de Madrid (Technical University of Madrid) UPM Spain
Fundación Valenciaport (Valenciaport Foundation) - Spain

KTH Royal Institute of Technology KTH
Hyperloop Sweden

École Polytechnique Fédérale de Lausanne (Swiss Federal Institute of Technology Lausanne) EPFLoop Switzerland
EPFL, Distributed Electrical Systems Laboratory—Power Systems group - Switzerland
Eidgenössische Technische Hochschule Zurich (Swiss Federal Institute of Technology
Zurich)—Institute for Transport Planning and Systems

ETH
Zurich-IVT Switzerland

ETG Zurich, Department of Mechanical and Process Engineering ETH Zurich-
D-MAVT Switzerland

ETH Zurich, University of Zurich (UZH), University of St. Gallen, University of Applied Sciences
and Arts North-western Switzerland (FHNW) Swissloop Switzerland

Paul Scherrer Institute, Nuclear Energy and Safety Research Division PSI-NES Switzerland
The EuroTube Foundation EuroTube Switzerland
BAK Economics AG BAK Switzerland

Delft University of Technology—TU Delft Delft
Hyperloop

The
Netherlands

Delft University of Technology, Faculty of Industrial Design Engineering The
Netherlands

Transport & Planning Department, Delft University of Technology - The
Netherlands

Hyperloop Edinburgh (University of Edinburgh) HYPED UK
University of Edinburgh Business School - UK
University of Strathclyde Stathloop UK
University of Sheffield, Department of Mechanical Engineering - UK
University of Leeds, School of Civil Engineering, Institute for High-Speed Rail and System
Integration IHSRSI UK

University of Southampton - UK
University of Bristol - UK

Table 5. Private companies.

Private Companies Short Name Country

TransPod - Canada, France
IKOS Consulting - France

Munich Re - Germany
Nevomo - Poland
Zeleros - Spain

ROADIS Transportation Holding Roadis Spain
Swisspod Technologies Swisspod Switzerland

Hardt - The Netherlands
TRL - UK

In terms of EU publications, almost half of the publications are journals (49%), and
21% are conference publications, showing the academic interest in the hyperloop system
and the increasing research attempts in different aspects of the system. The remaining 30%
is allocated to reports, which are associated mostly with private-based stakeholders.

An analysis of the published literature is performed on the basis of infrastructure, pod,
and performance to gain a deeper insight into the hyperloop components and performance
goals that stakeholders work on. Infrastructure is divided into the (1) tube, (2) substructure,
(3) interface pod–tube, (4) station, and (5) other. “Other” covers publications that are not
covered by the four identified infrastructure areas or that refer to generic infrastructure
aspects. The pod is divided into the (1) system and propulsion, (2) interior, or (3) both.
Finally, the performance of the hyperloop system is explored by considering six areas:
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(1) safety, (2) energy, (3) aerodynamics, (4) traffic and capacity, (5) environment, (6) cost,
and (7) other. “Other” refers to publications that include two or more areas or areas that
are not covered within the six areas. Publications that focus on legislation were considered
separately; a necessary area of research for the development of the hyperloop. Figure 6
summarizes the results of this analysis. It is noted that one publication may be attributed
to one or more areas; therefore, the total sum may not be 100%.

Table 6. Public and private initiatives.

Private and Public Initiatives Short
Name Country

CEN-CLC/JTC 20—Hyperloop systems - Belgium
EU HyTeC - Germany

Institute of Hyperloop Technology IHT Germany
European Hyperloop Week EHW Spain

European Hyperloop Development - Spain
MAFEX’s Hyperloop—Hyperloop Spanish Observatory Spain

Railway Innovation Hub’s Hyperloop Strategic Working Group RIH Spain
European Hyperloop Program - The Netherlands
European Hyperloop Center EHC The Netherlands

Hyperloop Connected - The Netherlands

Hyperloop studies are found to conduct research related to the traction of the pod
(37%) within the tube (28%) and quantify impacts related to safety (35%), energy (33%),
and cost (30%). Other hyperloop areas, including passenger comfort and system accep-
tance, while focusing on substructure and station, are scarcer in the EU literature. For
the organizations that focus on the hyperloop pod, the majority of them focus on the
exterior design (i.e., related to aerodynamics), whereas only two studies were found to
focus specifically on the interior. Other fields of research relate to social impacts, land
implications, serviceability, and hyperloop maintenance.

Different fields of research are engaged in the hyperloop system, including mechanical,
transport, electric and aeronautical engineering, and business and structural experts. In
terms of transport modes (when such information was available), 7% of EU entities relate
to aviation, 44% relate to high-speed rail, 25% relate exclusively to the hyperloop, and 24%
relate to road transport.
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3.3. State of Progress for the Hyperloop System

Based on the literature findings, the current state of progress for the hyperloop system
is provided by focusing on the components of the system. These are:

• The vehicle (also called pod or capsule), which includes an aerodynamic fuselage (similar
to the construction of a commercial aircraft), the interior, and the electric subsystem.

• The infrastructure, which includes the tube, the sub-structure, and the stations. The
tube encloses and maintains the low-pressure environment, ensuring minimum air
leakage. The infrastructure also contains the pressure maintenance system and the
power substations, which provide a considerable reduction of air drag, allowing for a
smooth travel of the pod with speeds of up to 1200 km/h. Infrastructure characteristics
depend on the type of levitation and propulsion system.

• The communication system, which creates an autonomous environment, exchanges
data, and coordinates operations, ensuring safety and comfort.

3.4. The Pod
3.4.1. Structure

The pod is the main structural frame of the system and is considered equivalent to an
aircraft airframe [15,20]. The hyperloop pod is effectively a pressure vessel to withstand
pressure differences and, most importantly, to transport people and cargo [9,18–20,107]. Its
design combines aerodynamics, materials technology, and manufacturing methods with a
focus on performance, reliability, and cost [16]. The pod is designed to be light as possible
to accommodate external low-pressure conditions, design speed, and include on-board
systems and interior furnishings, maximizing passenger safety, travel experience, and
comfort, inside a tube-based environment [8,20,90,107]. The pod design significantly affects
the design of the tube infrastructure, which depends on the loading pad configuration and
the formation of distributed or concentrated loads [11], as well as the static, dynamic, and
thermal loads [61]. The frontal surface and shape of the pod may affect the aerodynamic
drag and the tube’s operational energy consumption [5,14,28,31,36,39,51]. The Kantrowitz
limit, the blockage ratio, the drag coefficient, and the pod’s length are certain factors for
optimizing the aerodynamic performance and pod speeds [5,18,22,24,26,27,34,41,43,51,60].

3.4.2. Pod Interior

Passenger safety and comfort inside a pod are based on a combination of best practices
from rail and aviation transport, containing certified components of mature technologies [8].
A human-centric interior design with augmented reality windows [17], lighting, bright
colors [19], texture, and control of sound levels will provide comfort, journey information
(i.e., time to destination, exact location, speed, time, simulations/videos of the external
environment), and entertainment to the passengers [108]. Interior furnishings and different
evacuation options for emergency cases within the pod will be considered to maximize
passenger safety and travel experience [16,19]. Moreover, pod interiors will be designed to
include first aid kits [16,17,19,53], automated external defibrillator machines, and an emer-
gency response call/communication system [16]. Conceptual designs of well-supported
seats with seatbelts to protect passengers from rapid acceleration and deceleration have
been demonstrated; however, testing seat design and safety aspects for passengers at high
operating speeds is required to establish their viability [16,19,20].

3.4.3. Power System

Two concepts of power systems are identified [5,16,109]: (1) The first uses a guideway
as a propulsor, creating a lightweight pod that needs a pricey infrastructure cost, and (2)
the second uses an energy-autonomous pod by storing massive amounts of onboard energy,
thus significantly lowering the infrastructure costs.

• On-board rechargeable batteries may provide power supply to the pod’s system [16].
Each pod may supply its own power for levitation, acceleration, control, and other
amenities. Fast-charging systems that store regenerative breaking energy are under
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development [110]. Challenges include thermal management, power requirements,
infrastructure cost, availability of pods, and charging intervals [16].

• An infrastructure-side power system, connected to the electrical grid, may demon-
strate several advantages, including better efficiency, reduced energy consumption,
potential cost savings on the construction of the tube, higher manufacturing tolerances
of the guideway, and synchronized control of propulsion, decreasing the potential
of collisions. However, high infrastructure costs, fault tolerance, and the acquisi-
tion of considerable land area to house the electric substations are certain limitations
associated with this system [16].

3.5. Infrastructure
3.5.1. Tube

The tube provides a low-pressure travel-guideway environment and protects
the pod from all external conditions [20]. It is airtight to maintain the low-pressure
environment [10,11,16,19,20,85,95,106,111], strong enough to prevent
failures [11,16,17,19,20,25,61,80,89,102] and designed according to the geometry of
the pod and the aerodynamic requirements [16,18–20,23,27,31,34,42,44,59,61,71]. Tube
geometry depends on the operational pressure level of the system [18,20,31,34,42,60,61,109].
Additionally, the tube needs to be grade-separated from other transport modes [8,16,44,112].
Concrete pylons are expected to support the tube system with a height depending on the
configuration of the guideway [53,107]. Three types of guideway infrastructures are under
study: elevated, on ground, and underground [8,9,11,13,16,22,66,87,107]. The elevated
guideway is expected to be the safer, as there is no need for crossing control systems at
roadway intersections [107] and the land footprint is smaller for pylons compared to a
railway track [44,107]. Leveraging the surface on top of the tubes, solar panels could be in-
stalled [8–13,17–21,25,44,53,66,87,88,106] depending on local conditions, thus contributing
to the local electric grid.

3.5.2. High-Speed Switches

The switches are track-changing mechanisms, which allow pods to pass from one
track to the other, realizing a point-to-point connection in a network of tubes and connect-
ing various cities [19,20]. For switches, two primary scenarios have been envisioned [16].
The first envisages allowing tubes to diverge toward different destinations. The second
splits the main tube in two, several kilometers away from a terminal, providing addi-
tional capacity for the acceleration and deceleration stages. A larger number of portals
(i.e., terminal entry or exit points) will be needed if actual pod volumes approximate fore-
casts [16]. The capability of the pods to switch between tubes is expected to be enhanced
by the development of switching technology [16,20]. The hyperloop system cost is highly
dependent on the number of required switches [16,20]. Maintenance and monitoring of
the high-speed switches are also required [16,20] to ensure lateral guidance and safety,
avoiding unexpected collisions [20]. The only switch technology demonstrated publicly, at
low speeds and at a reduced scale, is claimed to be at Technology Readiness Levels (TRL)
Level 4. However, as there are plenty of challenges for a magnetic-based switching system,
this technology is estimated to be at TRL Level 2 [16].

3.5.3. Airlocks

The airlocks are devices equipped with gate valves that allow the loading and un-
loading of hyperloop pods inside the evacuated tube, without re-pressurizing the whole
tube, thus facilitating the transition from atmospheric pressure to low pressure and vice
versa [10,19,20,90]. When the pod frequency is high, an arrangement of multiple parallel
operating airlocks is required to increase the speed and efficiency of (dis)embarking [16].
Airlock development can be divided into two main concepts [113]:
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• An airlock chamber in which pressure variation is expected. The airlock chamber acts as
a pressure regulator, ensuring the transition from atmospheric pressure to a low-pressure-
tube environment and the reverse; depressurization occurs once the pod is sealed.

• Bridge doors at the platform that will lock onto the pod doors allowing the pod to be exposed
only to a low-pressure environment and connecting the pod to the station atmosphere.

Two options for locating the airlocks are researched: placing the airlock chambers in
the station hall or in the low-pressure zone [87]. In terms of safety, operation time, and
minimum required area for (dis)embarking, the first concept is the most viable [113].

3.5.4. Pressure Maintenance System (PMS)

The PMS is responsible for the initial evacuation of air (pump down) and the mainte-
nance of the steady-state conditions, as well as managing air leakages [16,19,20,23]. PMS
may rely on different pressure levels, with some of them working at a pressure similar to
civil aviation and others similar to space [109]. Defining an optimum pressure level is a
trade-off between the required power to maintain the pressure and the power to overcome
the aerodynamic drag [20,23,109]. The power requirements to depressurize the tube on
time and maintain the low-pressure environment in the tube depend on the tube size [18].
A combination of backing pumps to create a low-pressure environment and root pumps to
reach and maintain the pressure to required levels is used to overcome the aerodynamic
drag [20]. The energy consumption for the pressure maintenance system is significantly
high [9,23], while the initial pump-down is the most energy-consuming process that results
in a high cost [16].

3.5.5. Interfaces—Levitation

The first hyperloop concept proposed the use of air-bearings for levitation combined
with a linear induction motor [17], which requires high maintenance, tight integration
between the track and the pod, and significantly increasing the pod weight with the use of
fans, motors, and hover-pads [15,20]. Subsequent efforts focused on magnetic levitation
(maglev) that can be coupled with electromagnetic propulsion for higher efficiency [23].
According to recent levitation comparison studies [5,20], the most dominant technology
for ultra-high speeds is the electromagnetic suspension (EMS) and the electrodynamic
suspension (EDS), called “active levitation” and “passive levitation”, respectively.

• The EMS technology is based on the attractive properties of the magnets, and it uses
pod-side electromagnets and ferromagnetic materials on the guideway [5,7,16,20,52].
The EMS works with magnetic forces giving a lower levitation of about 10–20 mm
above the guideway [11]. Optimization solutions have been recently reported us-
ing hybrid options (H-EMS) [114,115] or high-temperature superconductivity (HTS-
EMS) [116,117].

• The EDS technology is based on electromagnetic induction, and it uses pod-side perma-
nent magnets or superconducting electromagnets and a highly conductive guideway
infrastructure that generate opposing magnetic fields through induction [5,7,16,20,52].
In EDS, the pod can be levitated 10–100 mm, using permanent magnets (PM-EDS) or
superconducting magnets (SC-EDS) [11]. Another technology that uses embedded
conducting wire loops to minimize the eddy current from the moving magnetic array
is the Inductrack [118,119]. Using high-temperature superconductivity for EDS (HTS-
EDS), it supports speeds of up to 620 km/h [120]. It should be noted that a hybrid
solution using both EMS and EDS has also been proposed [121].

3.5.6. Interfaces—Propulsion

The main functions of the propulsion subsystem are to accelerate the pod, to have
the ability to brake or decelerate, to sustain the target speed between the acceleration and
deceleration zones, combatting drag forces, and to provide safe magnetic field levels and
comfort in the passenger compartment [5]. Currently, two types of propulsion systems are
under consideration: the axial compressors and the linear motors [16]. The latter include
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the linear induction motor (LIM), the linear synchronous motor (LSM), and the linear
switched reluctance motor (LSRM).

• The axial compressors compress air in front of the pod and generate thrust by forcing
it out of the back at higher energy. At low speeds, compressors could be considered im-
practical for the initial acceleration phase; however, air can be accelerated to generate
thrust if a small bypass or a large blockage ratio is considered [18].

• The LIM is a rotary motor consisting of a stator, which generates a varying magnetic
field across an air gap and a rotor [20]. A series of magnetically conductive poles are
arranged in a linear sequence, and time-varying electric currents are driven through
windings on the poles to create time-varying magnetic fields interacting between the
tube and the pod.

• The LSM consists of a number of permanent magnets on the pod and coils on the
guideway, creating a traveling magnetic field [122]. Specifically, a stator that is located
beneath the guideway produces a magnetic field along the guideway, and an excitation
system located onboard the pod stimulates the levitation electromagnet to produce an
excitation magnetic field [11]. The LSM is able to achieve high pod speeds, and it may
be a reasonable choice for an energy-efficient hyperloop.

• The LSRM contains ferromagnetic poles and a secondary ferromagnetic part, sepa-
rated from the primary by an air gap. Three configurations of LSRM were compared:
a single-side horizontal LSRM, an N-side vertical LSRM, and a cylindrical LSRM [105].
The LSRM has been proposed for a wide range of applications, which include au-
tonomous railway vehicles, due to its potential for high energy efficiency [123].

3.6. Communication System

Several types of communication systems are required, including (1) the commu-
nication of the pod’s sensor data to and from a centralized data processor and (2) the
communication related to the pod’s location between the pod and the tube [20]. Certain
challenges exist related to the pod communication and the collection of data, as well as the
high-speed connection between the pods and the infrastructure [16,20,94,124–128].

A new generation of optical fibers allows the wireless communication between anten-
nas with radio waves, [9,10,19,20]. The GSM-R (Global System for Mobile Communications-
Railway) is the primary communication system [20] for HSR; however, due to certain
limitations [128,129], the LTE-R (Long-Term Evolution-Railway) may be used in communi-
cation systems. The LTE-R provides capabilities for data transmission, Internet access, and
high-quality voice or mobile video broadcasting [130]. Innovative systems have been also
developed, such as radio and fiber networks, with dedicated antennas placed at intervals
along the hyperloop system and hardware installed on the pod using the latest 802.11 Wi-Fi
standards [131].

3.7. Hyperloop Test Tracks

An overview of the current status of the development of pods, tube systems, and
testing facilities for the hyperloop is provided to complete the identification of active
actions in terms of available infrastructure and test locations. Hyperloop companies and
organizations, which are involved in the development of pods and tube systems for the
commercialization of hyperloop, are mentioned below as “developers”. A number of
privately funded companies and public institutions have already built facilities, aiming
to perform full-scale tests. However, only one developer (i.e., Virgin Hyperloop One) has
introduced pod and tube infrastructure in full-scale, while in November 2021, they tested
the world’s first passenger journey. Table 7 summarizes the current status of progress
of different developers and the characteristics of the testing track facilities (i.e., scale,
technology, maximum reported pod speed, etc.) at a global level.
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Table 7. Current status of the development of hyperloop testing track facilities in different scales.

Name Location

Max.
Tested
Speed
(km/h)

Propulsion Levitation Testing Track
Facilities Scale Reference

Hardt The
Netherlands - LSM EMS Completed

Length 30 m, diameter 3.2 m Full scale 1:1 [20,132,133]

Hyperloop
TT

France, US,
UAE,

Germany
- LSM EDS

France: Completed length 320 m,
diameter 4 m.

UAE: Developing a 4.8 km
passenger track and test track 1 km

US: multiple routes under study
Germany: 100 m cargo route

Full scale
1:01 [8,134,135]

KRRI South Korea 1019 LSM EDS 60 m track, 20–30cm vehicles 1:17 [136–138]

Nevomo Poland 50 LSM EDS Completed—length: 48 m
Developing—length 500 m

1:5, Planned
tests at 1:1 [139,140]

SwissPod Switzerland - LIM EMS Developing—40 m length Unknown [16,141,142]

Transpod France,
Canada - LIM EMS Developing at 3 km, diameter 2 m

1:4,
Planned tests

at 1:2 and
full scale 1:1

[143,144]

Virgin
Hyperloop

One

USA, Saudi
Arabia,
India

387—
Devloop

173
passenger

test

LIM EDS

Completed in the US—length 500 m,
diameter 3.3 m.

Developing full-scale projects in the
US, Saudi Arabia and India

Full scale 1:1 [145,146]

Zeleros Spain -

Compressed
air

Electric–
aerodynamic

EMS

Completed: Six key subsystem
prototypes.

Developing 3–4 km tube test-track
for system integration at high

speeds.
20–40 km track for commercial

certification and manned tests by
2030.

1:3,
Planned

Tests at 1:1
[147,148]

4. Discussion

The hyperloop development is in the preliminary stages, and improving the technology
readiness levels depends on initiatives and collaborations with both the private and public
sectors. Understanding the current status and goals that are set for the hyperloop development
results in directions that should be followed to bridge potential gaps. The following sub-
sections use the presented hyperloop system categorization and blend literature findings to
provide future directions toward developing a successful hyperloop system.

4.1. Future Directions
4.1.1. Pod and Tube Design

The pod frontal surface and shape affect the aerodynamic drag and the tube’s opera-
tional energy consumption; therefore, factors such as the Kantrowitz limit and the drag
coefficient should be further researched. The optimum blockage ratio, the aerodynamic
performance, and the material characteristics have the potential to contribute to lighter
pods and reduced aerodynamic drag. Certain limitations still exist regarding the tube
design, including lack of real-scale test facilities, standardized dimensions for tube di-
ameter, as well as materials and proof of concept for dimensional stability. Given that
very long tube lengths may experience thermal expansion variance of up to 300 m, the
installation of thermal joints and connections for different tube joints is a complex task that
should be addressed. System simulations are required to define the optimum aerodynamic
pod with adequate passenger-carrying capacity, capable of reaching the anticipated ultra-
high speeds. The tube prototypes should be tested for leakage rates at lower speeds and
full-scale conditions to verify the exact diameter and dimensional stability.
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4.1.2. Pod Interior

Conceptual designs of well-supported seats with seatbelts to protect passengers from
rapid acceleration and deceleration have already been demonstrated; however, testing
seat design and safety aspects for passengers at high operating speeds is still required to
establish the viability of the concept. Passenger comfort needs to be satisfied for vehicle
acceleration/deceleration in curves and switches, and the optimal seating arrangement
should be verified to ensure passengers’ safety. Traveling at ultra-high speeds is an innova-
tive concept that is offered by the hyperloop; therefore, the sustainability of the hyperloop
depends also on the passengers’ acceptance of such a system. Measuring the noise level
within the cabin and assessing passengers’ comfort when traveling with simulated win-
dows at ultra-high speeds is still an unexplored field of research that future attempts
should focus on. Studying the pod’s comfort by simulating multiple aspects, including
seat comfort, thermal comfort, crowdedness, psychological distress, noise, motion sickness,
and access to facilities, becomes essential for an optimum interior design.

4.1.3. Airlocks and High-Speed Switches

Commercial airlocks are still untested components. The number and characteris-
tics of airlocks should be defined to ensure fast, efficient, and friendly passenger board-
ing/disembarking, while airlock maintenance and monitoring plans should be developed.
The airlock deployment is affected by the need to (1) maintain a constant low-pressure
over long tube segments, (2) eliminate pressure failures, and (3) create a communication
system for managing the system. The switching process would occur at operational speeds
of roughly 600 km/h; however, such a concept should be evaluated through simulations
and in a real-scale environment. Understanding the possible failures and the risks in-
volved in changing tube guideways at ultra-high speeds will enhance the safety of such
state-of-the-art technology.

4.1.4. Pressure Maintenance System

The initial pump-down operation should be evaluated in terms of energy consumption,
cost, time, maintenance, and monitoring to ensure low-pressure conditions over long
segments. An in-depth analysis of the pressure pump system combined with computational
fluid dynamics simulations would significantly enhance the definition of the exact tube
pressure value (s).

4.1.5. Propulsion

The short-term goal related to the propulsion system is to assess two eligible designs:
integration inside the pod or along the various segments of the infrastructure. The as-
sessment should include aspects related to power consumption, cost, reliability, safety,
monitoring, and maintenance. If linear motors will be deployed along the tube, the in-
frastructure cost increases significantly. In this case, linear motors should be tested for
maximum acceleration and deceleration. Additionally, the pod weight increases due to on-
board power supply or contactless power transfer systems to sustain the electric propulsion.
To decrease infrastructure costs, axial compressors could be used. Moreover, the use of two
or more systems for propulsion/levitation and guidance may complicate the system and
increase maintenance costs. To that extent, several concepts have been demonstrated using
the non-symmetric double-sided linear induction motor (NS-DSLIM) [63,74], performing
the aforementioned functions in one system. However, finite element analysis (FEA) simu-
lations are required to optimize the ratio of levitation to thrust force. R&D should focus
on experimental demonstrations of different concepts to evaluate the performance and
efficiency of the propulsion systems at ultra-high speeds and longer tracks.

4.1.6. Levitation

The magnetic levitation evaluation should assess the trade-offs between energy con-
sumption, infrastructure costs, and operation reliability. For ultra-high speeds, the feasi-
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bility of EDS or EMS still needs to be proven. Furthermore, a cost comparison is required
to assess the infrastructure interface, since the electro-dynamic suspension (EDS) system
requires a conductive material, and the electromagnetic suspension (EMS) requires an
electrical steel rail. For the EMS, the active control system should be optimized to pre-
vent failures of sensing or malfunctions. Operation stability and comfort should be also
ensured against dynamic vibrations caused by guideway irregularities. Studies should
be conducted to evaluate a guideway configuration for low energy consumption, low
lift-to-drag ratio, and energy efficiency of the Hybrid-EMS, taking into account the power
losses as a major concern for hyperloop speeds. Optimization techniques such as genetic
algorithms and magnetic system analysis using numerical methods (FEM) [115] could be
used to optimize the Hybrid-EMS system.

Regarding the Inductrack, studies evaluating the feasibility of permanent magnets,
taking into account maintenance and operational costs, are very important to demonstrate a
highly energy-efficient solution at a low cost. Finally, the performance of high temperature
superconducting magnetic suspension (HTS) for both EMS and EDS should be evaluated
by comparing power losses, compatibility to high speeds, reliability, and stability, according
to various HTS material configurations.

4.1.7. Power System

The propulsion system influences the compatibility of the levitation system and im-
pacts the overall performance and lifecycle costs. On-board rechargeable batteries may
provide power supply to the pod’s system and multiple options to achieve fast charging
are under development. Certain challenges of using battery systems should also be solved,
including thermal management, mass saving considerations, power requirements, infras-
tructure cost, availability of pods, and charging intervals. Apart from the use of batteries,
supercapacitors may be considered for power supply, due to their power/energy ratio
and cycle capability [48]; however, their adoption is prevented in high power applications.
Moreover, the use of hydrogen fuel cells could contribute to reducing the pod weight even
more and provide a solution to cool down the system [85,148,149].

Concerning the pressure maintenance system, for a given leakage rate, a trade-off
analysis should be conducted. Lower pressure increases the power demand in the vacuum
system to pump the tube down and maintain tube pressure, while higher pressure increases
the power requirements [23]. The initial pump-down is considered to be the most energy-
consuming process with a large impact on cost [16]. According to many design proposals,
power could be delivered through renewable energy sources; however, no details have
been provided, and their feasibility has not yet been proven. The study of renewable
resources (i.e., solar panels) is highly important in order to solve electrification issues and
to utilize the land occupied in a more sustainable way.

4.1.8. Communication System

Creating a communication system capable of operating with high capacity within an
automated system at ultra-high speeds and a tube-based environment is very challenging.
Optical fiber and wireless communication between antennas with radio waves is considered
an effective option for data transmission and should be further investigated. Due to
certain limitations of the GSM-R and the rapid growth of railway services, the LTE-R
(Long-Term Evolution-Railway) shall be considered the next generation communication
system, providing capabilities for data transmission and passenger services such as Internet
access and high-quality voice or mobile video broadcasting [130]. However, due to speed
limitations of 500 km/h, the current railway communication system, based on LTE, is
not compatible with the expected hyperloop speeds. A leaky waveguide solution with
a centralized, cooperative, Cloud Radio Access Network (C-RAN) has shown promising
results for the bidirectional communication link between the train and the ground [127].
New generation 802.11 networks (WiFi 6) and 5G NR could also be considered as an option;
however, network configuration and optimization are required for further evaluation [124].
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4.1.9. Real Scale Test-Tracks

Real scale test-tracks with minimum dimension requirements are essential for the de-
velopment and testing of the hyperloop system. In Europe, there is a strong public–private
collaboration for the development of testing facilities that will enhance the research and
development (R&D) of sustainable vacuum transport technologies. Two testing infrastruc-
tures are developed in Europe:

• The EuroTube [150], a non-profit framework based in Switzerland. In 2022, it plans
to create the world’s first publicly accessible vacuum transport test track at scale 1:2,
3.1 km in length, and 2.2 m in diameter, enabling the testing of cargo pods at speeds
between 700–900 km/h. An approximately 30 km long test track is under study for
development in 2026.

• The European Hyperloop Center (EHC) plans to create in 2022 a testing facility that
will house a 2.6 km long track with a cargo scale tube of 1.4 m in diameter [151].

4.1.10. Transport Engineering

The hyperloop introduces new attributes to the design of the infrastructure. The
speed, which is the main component that differs from traditional transport modes, affects
alignment parameters including the cant, the horizontal curvature, and acceptable rates
of change for vertical and horizontal cant and jerk. Additionally, in the design of vertical
curvatures, the utilization of vertical transition curves (e.g., clothoid) may be explored to
ease the dynamic effects on human bodies that are caused by hyperloop acceleration and
deceleration. Only a couple of research publications in the literature refer to alignment
aspects and discuss potential changes in the tube alignment. There is an emerging need
to expand the current state of practice for designing HSR and maglev rail alignments
to include hyperloop requirements. The hyperloop guideway is directly affected by the
applied alignment. The guideway may be elevated, on-ground, and/or underground.
On-ground and elevated guideway structures may be preferred in the shor term, due to
cost advantages; however, in the long term, underwater tunnels capable of supporting
a hyperloop system may provide an alternative to aviation. Conduction of simulations
by considering the aforementioned changes and drafting hyperloop design guidelines for
transportation engineers are essential elements for hyperloop realization.

4.1.11. Transportation Planning

Similar to design, the hyperloop, due to its innovative characteristics, both operational
and physical, introduces new aspects in transportation planning. A demand forecast
method needs to be established to provide rational assessments with other competing
modes in different corridors. Surveys (e.g., stated preference) may also be used to collect
data for potential hyperloop passengers, thus identifying their reaction to the introduction
of the hyperloop. Time and cost are two major parameters in the evaluation of the hyper-
loop. Time is inversely proportional to speed; thus, ticket costs should be explored as a
function of infrastructure cost and the passengers’ value of time. Users’ perception of the
value of travel time (VTT) and behavioral aspects should be also captured by surveys at the
national and international levels. The physical characteristics of the hyperloop (e.g., tube,
vacuum system, etc.) will affect the station design (i.e., number of tracks, platform sizes,
passenger, and freight waiting areas), the station type (under/overground), and the layout
of the connecting facilities (i.e., hubs) with other transport modes. Developing a simulation
software for a hyperloop system that embraces the aforementioned issues will be necessary
to provide robust and reliable assessments.

Generally, the review reports substantial stakeholder interest in the development and
testing of hyperloop components in a simulated environment or reduced-scale conditions.
Performance is assessed mainly by considering safety, energy, and cost aspects. This focus
is probably influenced by stakeholders’ need to demonstrate the feasibility of the hyperloop
technology and assess its performance related to other transport modes. However, the
literature showed that little effort has been put into legal and risk aspects, with only 12%
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of EU studies exploring related issues. Currently, the European legislation is divided
into four main areas: road, rail, waterborne, and aviation. Hyperloop is an innovative
mobility solution, partially integrating subsystems from rail and aviation, thus requiring
the formation of customized regulations to support its development and operation.

Our study suffers from certain limitations. The exclusion of theses and dissertations
could have been a limiting factor in that it is possible that new findings might have been
overlooked. Similarly, the inclusion of company reports might have led to some generalities,
although the authors attempted to reduce general remarks by integrating scientific papers
and findings. Hyperloop was considered to be a ground transport mode in this study,
which led to the exclusion of information that is related to underwater development and
operation of the hyperloop system. Additionally, the number of EU stakeholders that was
identified might have led to an insufficient interpretation of the current situation, thus
omitting the global perspective. Finally, the review has been conducted in the English
language, missing foreign governmental documents that may contain more information,
especially on legal and legislative aspects. These limitations suggest that it would be
valuable to consider foreign governmental documents and conduct a similar review by
considering North American and Asian stakeholders.

5. Conclusions

The development of the hyperloop system attracts interest from private and public
stakeholders, industrial leaders, and R&D entities. Since the release of the first hyperloop
study [17] in 2013, a remarkable and rapid evolution of the hyperloop technologies has
been observed. This study conducted a comprehensive literature review of the hyperloop
system to explore the current state of progress of hyperloop components, identify related
stakeholders, their geographic location, and their work object, and provide future directions
to bridge existing gaps.

The analysis showed that Europe and Asia demonstrate particular interest in the
hyperloop system. More specifically, 81 unique EU stakeholders were identified to work
on pod or infrastructure components; however, very few of them were found to work
on pod interior or user acceptance. The majority of the publications were found to focus
on performance aspects, such as safety (35%), energy (33%), and cost (30%), while only a
couple of studies focused on legislation and risk analysis.

Stakeholders aim for hyperloop commercialization and solving technical issues that
arise from testing at a real scale. The design of the hyperloop’s technological components
is in progress, and developers appear to focus on power system requirements. Although
the hyperloop is foreseen to be powered by electricity and renewable energy sources, there
are no details about the feasibility of the power delivery method. Establishing the technical
requirements, creating a heat management plan, and conducting a feasibility analysis of the
evaluation of various concepts for power delivery are certain considerations to be solved
in the long term. The system functionality of certain technologies at a sub-scale level and
low speeds has been proven; however, the compatibility of the various systems in subsonic
and transonic speed ranges and real scale has to be verified. For the operational speeds
of a hyperloop, the feasibility of both EDS and EMS technologies still needs to be proven.
The comparison study between the two led to the conclusion that the EMS demonstrates
a better potential against the EDS due to its lower power consumption. Constant power
supply is required for both systems; however, the energy consumption using permanent
magnets can be reduced significantly by developing a suitable Inductrack guideway.

Although these aforementioned findings aim to contribute toward hyperloop devel-
opment in Europe, certain impediments to its progress exist. These include, but are not
limited to, the design of its sub-components, which are under study, and the operational
testing at real-scale and ultra-high speeds, which is under consideration. Finally, transport
engineering and planning guidance that embrace the hyperloop’s physical and operational
characteristics should be developed for the hyperloop design and implementation.
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The review may serve as a guide for stakeholders and investors seeking partnerships and
establishing research collaborations for the hyperloop, while the proposed research directions
aim to provide a pathway of actions capable of bridging the identified gaps in hyperloop
development. Our findings provide solid insights into the current state of progress of the
hyperloop system that may be used by interested stakeholders to extend their R&D activities
and identify potential gaps that need to be addressed for developing the hyperloop.

Future attempts may be focused on further expanding the stakeholder list at the global
level and gradually disaggregating hyperloop components to expose the system complexity
and engage more stakeholders in R&D activities. Then, a comprehensive database may
be built to link stakeholders and hyperloop components to facilitate collaborations and
enable knowledge sharing. In terms of system performance, each hyperloop component
may be explicitly studied to assess safety, energy, and cost impacts; performing a detailed
study and understanding potential tradeoffs will enhance decision-making. Finally given
the innovative nature of the hyperloop, an update of the current state of progress, for both
technology and stakeholders, will be required on a regular basis for the development of
the hyperloop system.
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